

Fig. 3. The relative positions of two curves of double-pulse homoclinic bifurcations and the curve of primary homoclinic bifurcations

				-			
for I	Eq. (16). The horizonta	al axis is ϵ and the vertice $\frac{1}{2}$ increases. Note that if	al one is the diffe	erence between the	α-values for the	ne two curves (α_0	_{lp}) and α _h . Two
						1 7	•
							7
							F
				1u-			
	^-						
· - · · -							
/T".		_ L:c	1 4L _ 1 £ L	1 1 1	• 1 1	* 1 * 41 **	_
	<u></u>						

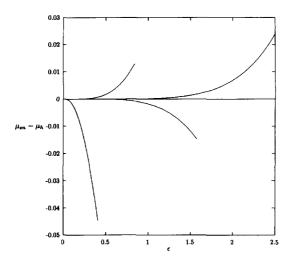
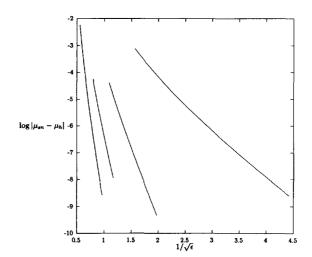



Fig. 7. A plot of the difference in μ-values for four curves of saddle-node bifurcations of periodic orbits and the curve of homoclinic bifurcation of a for evotant (19)

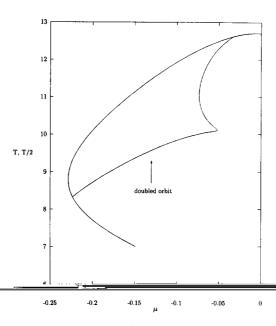


Fig. 9. A plot of period T (of the basic orbit) and half-period $\frac{1}{2}T$ (of the period-doubled orbit) versus α for Eq. (16), showing the bifurcation sequence "period-doubling, saddle-node, reverse period-doubling". The value of ϵ is 0.22346, and γ is 0.5.

5. Conclusion and comments

We did not dicuss path 1 of Fig. 2 in this paper. The bifurcations that occur along here are expected to be of interest because when $\delta=1$, the sum of the eigenvalues of the Jacobian is zero and the flow is then locally "conservative" in some sense. There are expected to be some similarities with the $|\lambda/\nu|=0.5$ case for the saddle-focus, as the flow in this case is also "divergence-free" at the stationary point. This last case is mentioned in [6], but does not seem to

One other granus onen for investigation is the application of the technique discussed in Section 2 to systems