

delimiting species' ranges, because biotic interactions shapewith low genetic diversity (Excof eret al. 2009). Higher species' distributions across all spatial scales (Acertedb 2012; Wiszet al, 2013).

on Earth has cycled repeatedly through cool and warm over species' ranges. extremes, in uencing species distributions (e.g. range shifts in Europe; Taberlett al, 1998; Hewitt, 1999; Seddort al, 2001). As climate changes, so does regional biodiversity andland. Three largely parapatric species are found in the North the size of species' ranges. Although most easily attributable Island: Hemideina crassiden H. trewicki and H. thoracica to abiotic factors, extinction, immigration and expansion are also in uenced by biotic interactions, and studies of the responses of species to concurrent changes in physical (i.e.in the northern two-thirds of the North Island, whereas climate) and biological (i.e. competitors, predators) environmental parameters have resurged recently (e.g. Detvis, 1998; Gaston, 2003; Montoya & Raffaelli, 2010; Acevedo is an area of intersection between crassiden and H. thoraet al, 2012; Hellmanret al, 2012). This is mostly the consequence of the realization that species' responses to climatesites in central North IslandH. crassiden sopulations are change are likely to depend not only on their ability to overcome abiotic constraints, but also on the suite of species with exclusion of H. thoracicaby H. crassiden in colder microwhich they either interact now, or are likely to interact with. in the future. If viewed as elements embedded in complex networks of interactions, the patterns of species' interactions determine the stability of populations when recovering from perturbations, and the likely consequences of local species extinctions on those populations that remain (Montoya & Raffaelli, 2010). How these network properties and the ecosystems linked to them will be modiled under climate change is poorly understood (Beret al, 2010; Walther, 2010). On the other hand, the genetic signatures of range expansions and shifts have been well explored (Excof er et al, 2009; Arenaset al, 2012) and allow inferences to be made about species distributions in the past which can improve our ability to predict the future.

New Zealand provides a convenient environment in which to study biogeographical processes, with an elongated landscape on a northsouth axis generating a subtropical to cooltemperate gradient, and a marine margin that imposes an abrupt environmental boundary. Previous studies on glacial refugia in New Zealand were developed from Northern Hemisphere models (Hewitt, 1996, 1999; Michaett al, 2003), but because glaciers only formed in part of western South Island, the idea of refugia relates primarily to shifts in broad vegetation types (Allowayt al, 2007; Trewicket al, 2011). Because most of New Zealand since the Last Glacial Maximum (LGM) was covered by forest, it was expected that animals and plants would show patterns of diversity consistent with the restriction of forest during glacial episodes. Evidence of this is not especially compelling (Wallis & Trewick, 2009; Trewicket al, 2011): although some forest insects have a signature of expansion from northern New Zealand (e.g. stick insects, Bucklevet al, 2009; Morgan-Richardset al, 2010), many other taxa have high levels of diversity throughout the country (e.g. Onychophora, Trewick, 1999; ferns, Shepherdet al, 2007; fungus beetle, Marsket al, 2009). If a recent (post-LGM) population expansion involving normal, short-distance dispersal occurred, we expect a wave-front

mean population nucleotide diversity is expected where large population sizes have been maintained for longer periods of Since the start of the Pleistocene (2.6 Ma), global climate time. Thus, we would expect contrasting patterns of diversity

> Here, we focus on the orthopteran genldsmideina(tree weta), which comprises seven species endemic to New Zea-(Fig. 1). Hemideina trewickhas the narrowest range, in eastern North Island. Hemideina thoracicas widely distributed H. crassiden's found in the southern third of the North Island and also in the north-west of the South Island. There cica (Trewick & Morgan-Richards, 1995). At a number of marooned in a sea off. thoracica suggesting competitive

H. ca de H. e c ... ن مورد المحرور المرازي مورد الماريان أوري $H. ca de \dots \dots$ السارية بالمستداد المرحل المحمل المحمد الألالي المسالة ND1- $b^{\frac{1}{2}}$ H h ac ca $col^{\frac{1}{2}}$ H c a de $b^{\frac{1}{2}}$ 21y man the second of the second 1,1, & ..., c, , 1.1.1, (, , , & . 1x, , - x, c, ,

and the second of the second of the second - ۱) وقير ريد ريي دياني دين دين د • ·· - • · · , 1995, 1997).

G-1-1 aa

SE-QUENCHER 4.7 (... , ...). ...). . . \sim COI, . . b . . ND1 21 H. c a de , H. h ac ca ... H. e c Geneious 5.6 (... e. a., 2012) and the second s والأراب والأخراء وأبح التراي 1128 (540), COI, 411 . . . b . . 177 ND1). H. h. ac ca COI ... H. c a de م سمجد ، الأرب

2000 - 1 water and a transfer and and a great and de , 550 H. h. ac ca. H. ca de - نه و سوده د را او سرداری و سده داده و درد 1. . NETWORK 4.1 (...... e a., 1999).

5 (8.3 1. 692-3 de 41, 10.4075. 1. -0 ((.)-435.8(487.9(1.)) -21.5090226(3.9/4.5(...) [583])34.6(-41, 430.4.6)(...33469(5...) 2.78765 369(338.8)

Ca 🗗 v a ปีปิล a a ปี: Mv Taaa

1 H. ca de

Morgan-Richards (2002) concluded that a distirhet crassidenskaryotype in individuals from South Island's west coast might have had its origins during a recent southward expansion, but this does not explain the distinct mtDNA haplotypes (clade 1) in the 19-chromosome race. MtDNA data corroborate the karyotype data, but suggest an older origin than the post-LGM expansion.

Previous studies of putative Pleistocene refugia for New Zealand animal species have tended to assume that the documented range shifts of many forest plants (mostly from palynology; see McGlonet al, 2010) would dictate the animals' ranges. Shepheret al. (2007) found that for some plants (the fern typesnt

- 679-693.
- من سخالین درار داکتر از آن کارگا سد به ب Re ce, 10, 564–567.
- E , a d S , e a, c, 40, 481–501.

- da. e. a W.a a d.50.4(-1.21c e,)-4.A. .J.

- Phillips, S.J. & Dudk, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecograph 31, 161–175.
- Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modellin 190, 231–259.
- Poloczanska, E.S., Hawkins, S.J., Southward, A.J. & Burrows, M.T. (2008) Modeling the response of populations of competing species to climate changecology 89, 3138-3149.
- Scott, M.B., Chinn, W. & Morgan-Richards, M. (2012) Use of rock crevices as refuges by the tree when ideina femorata Hutton 1897 (Orthoptera: Anostostomatidae) at Mt Cass, CanterburyThe Weta43, 33-47.
- Seddon, J.M., Reeve, N.J., Santucci, F. & Hewitt, G.M. (2001) DNA footprints of European hedgehogs;inaceus europaeusand E. concolorPleistocene refugia, postglacial expansion and colonization routeMolecular Ecology 0, 2187-2198.
- Shepherd, L.D., Perrie, L.R. & Brownsey, P.J. (2007) Fire and ice: volcanic and glacial impacts on the phylogeography of the New Zealand forest ferrAsplenium hookerianum Molecular Ecolog 16, 4536-4549.
- Sinclair, B.J., Worland, M.R. & Wharton, D.A. (1999) Ice nucleation and freezing tolerance in New Zealand alpine and lowland wetaHemideinaspp. (Orthoptera; Stenopelmatidae). Physiological Entomolo@4, 56-63.
- Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science 40, 1285-1293.
- Swofford, D.L. (1998PAUP*: phylogenetic analysis using parsimony (*and other methods) inauer Associates, Sunderland, MA.
- Taberlet, P., Fumagalli, L., Wust-Saucy, A.G. & Cossons, J.-F. (1998) Comparative phylogeography and postglacial colo-

,